Culturing Izon ES Cell Clones

Cell Line Information

Izon cell clones are feeder-dependent.

Parental ES cells: * W9.5, isolated from 129S1/Sv mouse strain

* Bruce4, isolated from C57BL/6 mouse strain

Injection of cells into C57BL/6 blastocysts will produce agouti

chimeras. These cell lines are mycoplasma free.

Feeder cells: MEF feeder cells express very small amounts of Leukemia Inhibitory

Factor (LIF) and neomycin phosphotransferase (Neo). This cell line is

mycoplasma free.

Reagents and Supplies

<u>Item</u>	<u>Vendor</u>	Catalog Number
DMEM, high glucose, with glutamine	Gibco	11965-092
Penicillin/Streptomycin, 100 u/ml	Gibco	15140-122
L-Glutamine	Gibco	25030-081
Sodium Pyruvate	Gibco	11360-070
NE Amino Acids	Gibco	11140-050
Trypsin EDTA (1X, 0.25%) (supplement the 0.25% with 1% Chick Serum)	Gibco	25300-054 (0.05%) 25200-072 (0.25%)
LIF (ESGRO)	Gibco	13275-029
Fetal Bovine Serum, Defined	Hyclone	SH30070.03
PBS (1X without Ca or Mg)	Gibco	14190-144
DMSO, 100 ml (2X Freezing medium: FBS with 20% DMSO – make fresh as required)	Sigma	D2650
Mitocycin C 10x2mg (10μg/ml Inactivation media: add 2mg of Mitomycin C to 200 ml MEF Feeder medium -may be stored at 20°C for up to 6 months)	Sigma	M0503
2(β)-Mercaptoethanol (1000x working soln: add 70μl 2- Mercaptoethanol to 9.93ml PBS. Store at 4°C, and make fresh every 2 weeks)	Sigma	M-7522
Gelatin, 2% (0.1% working soln: add 25 ml of 2% solution to 475ml of PBS. Store at 4°C)	Sigma	G1393

MEF Feeder Medium (sterile filter through 0.2μM filter unit)

<u>Reagent</u>	Stock Conc.	Final conc.	Total: 500ml
DMEM		1x	435ml
FBS	100%	10%	50ml
L-Glutamine	200mM	2mM	5ml
Sodium Pyruvate	100mM	1mM	5ml
Pen/Strep	10,000U/ml	100U/ml	5ml

Izon / Bruce4 Cell Medium (sterile filter through 0.2μM filter unit)

<u>Reagent</u>	Stock Conc.	Final conc.	Total: 500ml
DMEM		1x	403.5ml
FBS	100%	15%	75ml
L-Glutamine	200mM	2mM	5ml
Sodium Pyruvate	100mM	1mM	5ml
NE Amino Acids	100mM	1mM	5ml
Pen/Strep	10,000U/ml	100U/ml	5ml
LIF	10 ⁷ U/ml	1000U/ml	1.0ml
1000x βME	5.5 x 10 ⁻⁶ M	1μΜ	0.5ml

MEF Inactivation Media (sterile filter through 0.2μM filter unit)

<u>Reagent</u>	Stock Conc.	Final Conc.	<u>Volume</u>
MEF Feeder medium	1x	1x	200ml
Mitomycin C	2mg powder	10ug/ml	2mg
Total Volume			200 ml

Preparing MEF Feeder Cells

Thawing, Expanding and Treating Active MEF Cells

- 1. Thaw 1 vial of MEF cells (approximately $1.5-2 \times 10^6$ cells/vial) in a 37°C water bath and dilute into 10 ml of pre-warmed MEF feeder medium.
- 2. Pellet the cells by spinning for 4 minutes at 1000 rpm in a bench-top clinical centrifuge.
- **3.** Aspirate off medium and gently resuspend cells in 5 ml of pre-warmed MEF feeder medium.
- **4.** Transfer cell suspension to a 6 cm gelatinized dish, and grow at 37°C in a humidified 5% CO₂ incubator (should be confluent within 2-3 days).
- **5.** When confluent, aspirate medium off and wash with 5 ml of pre-warmed PBS, pipetting it away from the cells. Rock dish gently and aspirate medium. Repeat.
- **6.** Cover cells with 1 ml of 0.05% trypsin solution and incubate at 37°C for 4 minutes or until cells are uniformly dispersed into small clumps.
- **7**. Add 5 ml of MEF Feeder medium to inactivate the trypsin, and pipette vigorously to make single cell suspension (we recommend 15 times).

- 8. Spin for 4 minutes at 1000 rpm.
- **9.** Aspirate off medium and gently resuspend cells in 20 ml of pre-warmed MEF Feeder medium.
- 10. Split the cell suspension onto two gelatinized 10 cm tissue culture dishes, and grow at 37° C in a humidified 5% CO₂ incubator (should be confluent within 2-3 days).
- 11. To mitotically inactivate, replace medium with 10 ml Inactivation medium (2mg of Mitomycin C to 200 ml MEF feeder medium), and incubate in a 37°C humidified 5% CO_2 incubator for 2.5 hours. Aspirate Inactivation medium, and rinse three times with pre-warmed PBS; aspirating completely between rinses. These dishes are now ready to use.
- **12**. If you wish to freeze the cells for later usage, trypsinize and pellet the cells as before, but with 1.5 ml of 0.05% trypsin solution, and inactivate the trypsin with 5 ml medium.
- 13. For each 10 cm dish, count cells, and resuspend in an equal volume of MEF Feeder medium and 2X Freezing medium; to a density of $1.5-2 \times 10^6$ cells/0.5 ml. Decant 0.5 ml aliquots into labeled cryovials.
- **14.** Immediately place cryovials in a Styrofoam container or temperature controlled freezing vessel.
- **15**. Freeze vials in a ⁻80°C freezer. After 24 hours, transfer cryovials to liquid or vapor-phase nitrogen for longer term storage.

Plating Mitotically Inactive MEF Feeder Cells

- **1**. Coat a 6 cm tissue culture dish with 0.1% gelatin and aspirate off immediately before use.
- **2.** Thaw 1 vial of mitotically inactive MEF Feeder cells (approx. $1.5-2 \times 10^6$ cells) in a 37°C water bath and dilute into 10 ml of pre-warmed MEF feeder cell medium.
- 3. Pellet the cells by spinning for 4 minutes at 1000 rpm.
- **4.** Aspirate off medium and gently resuspend cells in 5 ml of pre-warmed MEF Feeder cell medium.
- **5.** Transfer cell suspension to the 6 cm gelatinized dish, and grow at 37° C in a humidified 5% CO₂ incubator.
- **6.** The feeders are ready for use after 6-12 hours, or may be maintained in the incubator for a maximum of 8-10 days.

Thawing Izon ES Cell Clones

- 1. Thaw 1 vial of ES cells (approximately 5×10^6 cells/vial) in a 37°C water bath and dilute (drop wise) into 10 ml of pre-warmed Izon/Bruce4 cell medium.
- 2. Pellet the cells by spinning for 4 minutes at 1000 rpm.
- **3.** Aspirate off medium and gently resuspend cells in 5 ml of pre-warmed Izon/Bruce4 cell medium.

- 4. Aspirate the old medium from your 6 cm mitotically inactive MEF Feeder dish.
- **5**. Transfer the ES cell suspension to the feeder dish, and grow in a 37°C humidified 5% CO₂ incubator (Important: 10% CO₂ incubator for Bruce4-derived cell lines).
- 6. Change medium the following day to remove dead cells and residual DMSO.
- **7.** Change medium daily until 80% confluent (approx. $1.5-2 \times 10^7$ cells); should take 2-3 days.
- **8.** When confluent, the 6 cm dish may be split in two; half for microinjection and half to expand for freezing.

Expansion of Izon ES Cell Clones for Microinjection and Future Use

- **1**. 1 day prior, prepare one 10 cm MEF Treated Feeder dish, using the plating density guide below.
- 2. The next day, aspirate off the old medium prior to plating ES cells.
- 3. On the day, wash the confluent 6 cm ES cell dish once with 5 ml PBS.
- **4.** Cover the cells with 1 ml of 0.25% trypsin solution and incubate at 37°C for 4-5 minutes or until cells are uniformly dispersed into small clumps.
- **5.** Add 5 ml of Izon/Bruce4 cell medium; to inactivate the trypsin, and pipette vigorously to make single cell suspension (we recommend 10-15 times).
- **6.** Split the cell suspension in half, placing 2.5 ml each into 15 ml centrifuge tubes (labeled 'Expansion' and 'Microinjection').
- 7. Spin both tubes for 4 minutes at 1000 rpm.
- 8. For the 'Expansion' cells; aspirate off the supernatant and resuspend the pellet in 10 ml Izon/Bruce4 cell medium. Transfer the cell suspension onto the 10 cm MEF Treated Feeder dish prepared the day before. Grow in a 37°C humidified 5% CO_2 incubator (Important: 10% CO_2 incubator for Bruce4-derived cell lines). Change medium daily until 80% confluent (should take 2-3 days).
- 9. For the 'Microinjection' cells; aspirate off the supernatant and resuspend the pellet in 150-400 μ l microinjection medium (Hepes Buffered DMEM with 5% FBS; filtered through 0.2 μ M filter unit, can be aliquoted and stored at $^{-}20^{\circ}$ C for up to 12 months). Immediately place the cell suspension on ice, and microinject within 1-2.5 hours.

Freezing Expanded Izon ES Cell Clones

- 1. Wash the confluent 10 cm ES cell dish once with 10 ml PBS each.
- 2. Cover the cells with 1.5 ml of 0.25% trypsin solution and incubate at 37°C for 4-5 minutes or until cells are uniformly dispersed into small clumps.

- **3.** Add 5 ml Izon/Bruce4 cell medium to inactivate the trypsin, and pipette vigorously to make single cell suspension (we recommend 10-15 times).
- 4. Spin for 4 minutes at 1000 rpm.
- **5.** Aspirate supernatant and resuspend the pellet in an equal volume of Izon/Bruce4 cell medium and 2X Freezing medium (we would recommend 8-10 vials containing 0.5 ml aliquots; per 10 cm dish). Decant into labeled cryovials.
- **6.** Immediately place cryovials in a Styrofoam container or temperature controlled freezing vessel.
- **7.** Freeze vials in a *80°C freezer. After 24 hours, transfer cryovials to liquid or vaporphase nitrogen for longer term storage.

MEF Treated Feeder Cells - Plating Density Guide

Plate/Dish	Feeder Cell Density
96 well	1.5×10^4
24 well	1 x 10 ⁵
3.5 cm dish	8 x 10 ⁵
6 cm dish	1.5-2 x 10 ⁶
100 mm dish	3.5-4 x 10 ⁶