GENOTYPING BY PCR PROTOCOL KOMP Repository: UC DAVIS

Protocol:CR799 Asic4

Reagent/Constituent	Volume (μL)
Water	10.275
10x Buffer	2.5
MgCl ₂ (stock concentration is 25mM)	1.7
Betaine (stock concentration is 5M) Optional	6.5
dNTPs (stock concentration is 10mM)	0.5
DMSO Optional	0.325
Primer 1. (stock concentration is 20µM)	0.5
Primer 2. (stock concentration is 20µM)	0.5
Primer 3. (stock concentration is 20µM)	0.5
Primer 4. (stock concentration is 20µM)	0.5
Taq Polymerase 5Units/µL	0.2
DNA (example) extracted w/ "Qiagen DNeasy columns or other similar silica based kits"	1.0
TOTAL VOLUME OF REACTION:	25.000 μL

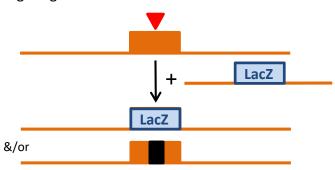
Comments on protocol:

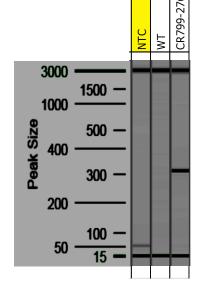
- Protocol may work with other DNA extraction methods.
- Use Touch-Down cycling protocol-first 10 cycles anneal at 65°C decreasing in temperature by 1.0°C; next 30 cycles anneal at 55°C.
- Betaine and DMSO have been standardized due to high GC content. Protocol may be tested without. Also, may adjust MgCl₂ to increase reaction or decrease non-specific amplifications.

Strategy:

Steps		Temp (°C)	Time (m:ss)	# of Cycles
1. Initiation/Melting	HOT START? ☐	94	5:00	1
2. Denaturation		94	0:15	
3. Annealing	steps 2-3-4 cycle in sequence	65 to 55 (↓1°C/cycle)	0:30	40x
4. Elongation		72	0:40	
5. Amplification		72	5:00	1
6. Finish		15	∞	n/a

Primers:


Electrophoresis Protocol:


Name	Nucleotide Sequence (5' - 3')	Agarose: 1.5%	V: 90	
1. SEQ-Asic4-F	GCCTGGCAGATACTCAGTCTGC	Estimated Running Time: 90 min		
2. CpGf-lacZ-R	CTGTCCTGGCTTCCTCAGAGTTCC	Primer Combination	Band (bp)	Genotype
3. SEQ-Asic4-R	GCCTCCTTCTCACAGCGCAGTC	1 & 2	311	mutant
		1 & 3	237	wildtype

Allele Description: Exon 4 (ENSMUSE00000265212) has an in-frame LacZ insertion in the Asic4 gene (ENSMUST00000037708.9) using CRISPR Cas9 gene editing technology in mouse zygotes. Subsequent founders were backcrossed to C57BL6/N to produce sequence confirmed heterozygous animals.

Homologous recombinant

*Targeting Confirmed

