GENOTYPING PROTOCOL MUTANT MOUSE RESOURCE & RESEARCH CENTER: UC DAVIS

mmrrc@ucdavis.edu 530-754-MMRRC

Protocol Name: MMRRC 71887 C57BL/6N-Ace2em1(ACE2)MbpTmprss2em1(TMPRSS2)MbpFurinem1(FURIN)Mbp/Mmucd

Protocol: GoTag® G2 Colorless Master Mix(Promega)

Reagent/Constituent	Volume (μL)
Water	4.0
GoTaq® G2 Colorless Master Mix,2X	7.5
Primer 1. (stock concentration is 20µM) IVF	0.5
Primer 2. (stock concentration is 20µM) IVR	0.5
Primer 3. (stock concentration is 20µM) kiR	0.5
DNA (example) extracted w/ "Qiagen DNeasy columns or other similar silica based kits"	1.5
TOTAL VOLUME OF REACTION:	15.0 μL

Comments on protocol:

Protocol may work with other DNA extraction methods.

Strategy:

icgy.				
Steps		Temp (°C)	Time (m:ss)	# of Cycles
1. Initiation/Melting	HOT START? ☐	94	2:00	1x
2. Denaturation		94	0:10	
3. Annealing	steps 2-3-4 cycle in sequence	65 (↓1°C/cycle)	0:30	10x
4. Elongation		68	2:00	
5. Denaturation		94	0:15	
6. Annealing	steps 5-6-7 cycle in sequence	55	0:30	25x
7. Elongation		68	2:00 (†20sec/cycle)	
8. Finish		4	∞	n/a

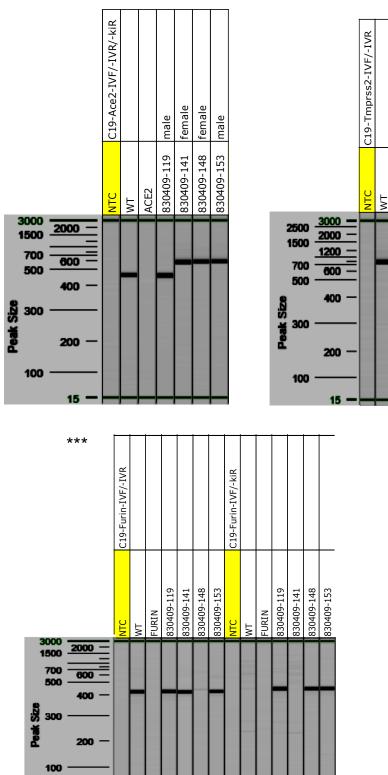
Primers:

Electrophoresis Protocol:

Name	Nucleotide Sequence (5' - 3')	Agarose: 1.5% V:	90	
1. C19-Ace2-IVF	CTGTTTACATATCTGTCCTCTCCAGG	Estimated Running	90 min.	
2. C19-Ace2-IVR	GCTACAGAGGCAGTCACTCATCCTC	Primer Combination	Band (bp)	Genotype
3. C19-hAce2-kiR	CCTCAGATCTCCAGCTTTCCCAA	1 & 2	522	wildtype
		1 & 3, 1 & 2	723, 3757	mutant

Name	Nucleotide Sequence (5' - 3')	Agarose: 1.5% V:	90	
1. C19-Tmprss2-IVF	AGGTTCTCTGTACCTCAGAGGAGGA	Estimated Running	90 min.	
2. C19-Tmprss2-IVR	CCTGTCTCACCCTTTCCAACATAACC	Primer Combination	Band (bp)	Genotype
3. C19_Tmprss2-kiR	ACCTGAGGAGTCGCACTCTATCC	1 & 2	721	wildtype
		1 & 3, 1 & 2	643, 4001	mutant

Name	Nucleotide Sequence (5' - 3')	Agarose: 1.5% V:	90	
1. C19-Furin-IVF	ATCAGTGTGTGGCTGAGAGGACTG	Estimated Running	90 min.	
2. C19-Furin-IVR	CTGCTGCATGGTTTGAGAGTCTCT	Primer Combination	Band (bp)	Genotype
3. C19-Furin-kiR	GCTGTTCCAGCCACTGTACTTGAG	1 & 2	477	wildtype
		1 & 3, 1 & 2	506, 4371	mutant


Allele Description: Generation of a humanized ACE2 (ENSG00000130234.6) mouse line. CRISPR RNP was utilized to assist with homologous recombination using dsDNA repair template in ES cells. The mouse exon two 5' UTR-ATG is replaced with human exon two 5' UTR/CDS/m3'UTR. The expression of the human CDS will be controlled by the mouse regulatory systems (including 3'UTR) as the expression pattern is similar between species and specifically highly expressed in the lung. Subsequent founders were backcrossed to C57BL6/N to produce sequence confirmed heterozygous animals.

Allele Description: Generation of a humanized TMPRSS2 (ENSG00000184012.7) mouse line. Human cDNA consisting of exons 3-14 will be fused to the mouse exon 2 ENSMUSE00000641779. CRISPR RNP will be used to assist with homologous recombination using dsDNA repair template in ES cells. The mouse exon 2 splice acceptor (SA) and the guide protospacer nt 1-17 is removed from the HR template to prevent potential downstream splicing or RNP re-cleavage. The expression of the human CDS will be controlled by the mouse regulatory systems (including 3'UTR) as the expression pattern is similar between species and specifically highly expressed in the lung. Subsequent founders were backcrossed to C57BL6/N to produce sequence confirmed heterozygous animals.

GENOTYPING PROTOCOL MUTANT MOUSE RESOURCE & RESEARCH CENTER: UC DAVIS

mmrrc@ucdavis.edu 530-754-MMRRC

Allele Description: Generation of a humanized FURIN (ENSG00000140564.6) mouse line Human cDNA consisting of exons 2-16 will replace mouse exon 1 ATG. CRISPR RNP will be used to assist with homologous recombination using dsDNA repair template in ES cells. The mouse exon 2 ATG replaced with human exon 2 CDS/m3'UTR in the HR template to prevent potential downstream splicing or RNP re-cleavage (2 engineered silent mutations in hCDS). The expression of the human CDS will be controlled by the mouse regulatory systems (including 3'UTR) as the expression pattern is similar between species and specifically high in the lungs. Subsequent founders were backcrossed to C57BL6/N to produce sequence confirmed heterozygous animals.

	C19-Tmprss2-IVF/-IVR							C19-Tmprss2-IVF/-kiR							***
2500 <u>3000</u> —	NTC	WT	TMPRSS2	830409-119	830409-141	830409-148	830409-153	NTC	WT	TMPRSS2	830409-119	830409-141	830409-148	830409-153	
1500 <u>2000 —</u> 700 <u>1200 —</u> 700 <u>600 —</u> 80 400 —															
100 —															

	ACE2	TMPRSS2	FURIN
#119	wt	wt	het
#141	hom	het	wt
#148	hom	hom	hom
#153	hemi	het	het

*** Note: Separate WT and Mut rxn required for Qiaxcel imaging (TMPRSS2 and FURIN).

Large mutant band is not observed with these PCR protocols.