hgRNA Illumina Library Prep PCR Protocols for MARC1 models distributed from the MMRRC

SBS3-PBLib-F acactctttccctacacgacgctcttccgatct atggactatcatatgcttaccgt
SBS9-PBLib-R tgactggagttcagacgtgtgctcttccgatct gccataccaatgggcccgaa
SBS3 acactctttccctacacgacgctcttccgatct
SBS9 tgactggagttcagacgctcttccgatct

1. Obtain genomic DNA from each mouse using one of the following strategies:
 o Clean: using any genomic DNA purification protocol or kit (such as Qiagen DNeasy blood & tissue kit) extract genomic DNA and measure its concentration.
 o Dirty: Obtain two ear notches from each mouse in an Eppendorf tube and dissolve them using 25-30ul of Qiagen Buffer ATL with proteinase K (or similar solution) by shaking at 56°C for 15-60min. Inactivate proteinase K with PMSF or other appropriate protease inhibitor. Dilute 1ul of this dissolved mixture 100 times in TE with 0.1% Triton-X100. Use 1-2ul of this diluted mixture in the next step without measuring concentration.

2. Set PCR1 for each sample as follows (use a mastermix for multiple samples):
 o 2x Kapa Sybr Fast qPCR mix 5ul
 o Template DNA 0.1-10ng
 o SBS3-PBLib-F primer 0.05uM
 o SBS9-PBLib-R primer 0.05uM
 o SBS3 primer 0.2uM
 o SBS9 primer 0.2uM
 o Water: To 10ul total volume

3. Cycling conditions in a realtime PCR machine:
 o 95°C for 3 min
 o Repeat {95°C for 20 sec; 64°C for 20sec} 20 to 30 cycles
 o Stop the reaction after amplification starts but before it reaches the mid-exponential phase

4. Dilute each PCR product 10-100 folds. It is helpful to dilute samples that amplified more in PCR1 accordingly at this stage to obtain similar concentrations for all samples.
5. Set PCR2 (indexing) for each sample as follows:
 - 2x Kapa Sybr Fast qPCR mix (or any other PCR mix): 6.5ul
 - Diluted product from PCR1: 2ul
 - NEB Forward Indexing primer (or other indexing primer): 0.2-0.4uM
 - NEB Reverse Indexing primer (or other indexing primer): 0.2-0.4uM
 - Water: To 13ul total volume

6. Cycling conditions in a realtime PCR machine (dependent on the PCR mix used, here for Kapa Sybr Fast mix):
 - 95°C for 3 min
 - Repeat {95°C for 20 sec; 64°C for 25sec} 10 to 15 cycles
 - Stop the reaction when most plates reach mid-exponential phase

7. Combine indexed PCR products into a library and purify it using Zymo or Qiagen kit.

8. Run a sample of the library on the gel. Correct product is 400-450bp (should be a narrow smear). If a smaller primer dimer band exists, gel-extract the correct size range (300-500bp range).

9. Quantify and sequence with Illumina (MiSeq is adequate) using 190 by 60 paired end reads.
barcode classification
AAACCCGGG Slow
ACATTCGGTT Slow
ACCACTGCTG Slow
ACCCCTGGGAC Slow
ACTCCATGTT Slow
AGCACTGTAC Slow
AGTCTGCCTC Slow
ATGCTTAGCT Slow
ATGCGGCCTA Slow
CATCGTCGTC Slow
CCTTTACCGC Slow
CGAAATCCTTT Slow
CGACAGTTAT Slow
CGTGGTTGCT Slow
CTGAGTTTTA Slow
CTTTTGTCCG Slow
GCCAAGATGG Slow
GCCAGCCGCT Slow
GCTCTACGCC Slow
GGCCCCTACA Slow
GGGTGACACG Slow
GTCAAATACC Slow
TAACTTATAC Slow
TAGCCATGCA Slow
TCTATCGAGG Slow
TTTTGCACAC Slow
AACGCCCTAC Inactive
AACTATCGGC Inactive
AATCTACCTA Inactive
AAGACTTCAT Inactive
ACTCGGTTC Inactive
AGACCCCTGC Inactive
AGCCCAATAC Inactive
AGTCATCAGAA Inactive
CCCATCACCC Inactive
CCCCCTCATT Inactive
CCTCACCCCA Inactive
CGCATGATGC Inactive
CGCCGCTAGTA Inactive
GACCTCAATT Inactive
GCCCAATTCC Inactive
GCGAAGTCCC Inactive
GCGACCCTCC Inactive
TAACTGCTCT Inactive
TCTCTAGATC Inactive
AAGCCGCGCG Intermediate
CATTGAGGAT Intermediate
CCCAAAACAC Intermediate
CGTGGGCCCA Intermediate
CTACTCGGCC Intermediate
CTGCTATCGA Intermediate
GAAAGCCCGC Intermediate
GACACAGACA Intermediate
GATACCCCA Intermediate
GTACACAATT Intermediate
CACAACGGCC Fast
CAACTCAAGG Fast
GTGGAGCCTC Fast
TTAGCTATGT Fast
TGGAGCTAA Fast
CTCTGTAAGTC Fast
TGTTGATGGT Fast
AGCACAACCA Intermediate
AGGTGTCTAA Intermediate
ATGGAGGGAC Fast
ATGTCACGGA Intermediate
CAAGGGCCT Intermediate
CACCTCGGAC Intermediate
CATATATTCC Intermediate
CGGTCTTCA Intermediate
CGGGGGTCC Intermediate
GACCCTTCCT Intermediate
GCGTCGCCCT Intermediate
TACACAGATA Intermediate
TACACCCCA Intermediate
TAGAACCATG Intermediate
TCACAGGCCC Intermediate
TCTTATAACC Intermediate
ATGACCCACC Slow
CCACCATCCT Slow
CCTACAACAG Slow
CGGTCTGTAC Slow
GACGAAGACA Slow
GACGGTTCCA Slow
GCAACCCAGC Slow
GCCCACTACA Slow
GGCGACCGCA Slow
TTATCTTTCA Slow
TTTGACACATA Slow
AAGGCGGATC Inactive
ACCAATACCT Inactive
ACGTCGGGA Inactive
AGGATACGCC Inactive
ATAGCTGATG Inactive
CAATCCCGACT Inactive
CAGGGTGATA Inactive
CAACTTAATCC Inactive
CATACCCCA Inactive
CCACTAACTT Inactive
<table>
<thead>
<tr>
<th>Sequence</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCTTAAGCGC</td>
<td>Inactive</td>
</tr>
<tr>
<td>GAACCGCTGG</td>
<td>Inactive</td>
</tr>
<tr>
<td>GACTCTGGCC</td>
<td>Inactive</td>
</tr>
<tr>
<td>GAGCGCTGGG</td>
<td>Inactive</td>
</tr>
<tr>
<td>GCCCACCACA</td>
<td>Inactive</td>
</tr>
<tr>
<td>GGCCTTTGAC</td>
<td>Inactive</td>
</tr>
<tr>
<td>GTATCCCGAG</td>
<td>Inactive</td>
</tr>
<tr>
<td>TCATACGGGC</td>
<td>Inactive</td>
</tr>
<tr>
<td>TCTCCGGGCA</td>
<td>Inactive</td>
</tr>
<tr>
<td>TGACGTTTCT</td>
<td>Inactive</td>
</tr>
<tr>
<td>TGCCAGCTGA</td>
<td>Inactive</td>
</tr>
<tr>
<td>TGTTTCTTTT</td>
<td>Inactive</td>
</tr>
<tr>
<td>TTACCACGAA</td>
<td>Inactive</td>
</tr>
</tbody>
</table>